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Boundary-layer separation at a free streamline. 
Part 1. Two-dimensional flow 

By R. C. ACKERBERG 
Polytechnic Institute of Brooklyn 

Graduate Center, Farmingdale, New York 

(Received 1 1 August 1969) 

The boundary-layer flow just upstream of the trailing edge of a flat plate is 
studied when a free streamline is attached to the edge. The separation at  the edge 
occurs with an infinitely favourable pressure gradient and is characterized by a 
skin friction which is proportional to the inverse eighth power of the distance from 
the edge. The proportionality factor for the first-order term is independent of 
the upstream boundary-layer flow. The streamwise velocity profile at separation 
is non-analytic near the wall Y = 0, and starts with the term Y8. 

1. Introduction 
This paper is a study of the boundary-layer separation that occurs at  the sharp 

trailing edge of a flat plate when there is a free streamline attached to the edge. 
Problems of this type occur in a number of physical situations, the most notable 
cases arising from cavitation and hydraulic applications involving free streamline 
flows. The important feature which distinguishes this separation from the usual 
boundary-layer separation is the sign and magnitude of the pressure gradient 
imposed on the boundary layer by the potential flow. In classical separation the 
pressure gradient is adverse while here the gradient is extremely favourable, with 
a singularity right at the edge. It is of practical and theoretical interest to find a 
description of these flows near the singularity. 

In  the past many authors have failed to distinguish any basic difference 
between cavitation and boundary-layer separation (see, for example, Lighthill’s 
comments in Rosenhead (1963, p. 4)). This confusion arose, no doubt, from the 
early use of the free streamline theory in the analytical treatment of both pheno- 
mena. Except for this dubious similarity, these phenomena occur in totally 
different physical situations. Although free streamlines are an approximation to 
flows with separation, they accurately describe cavitating flows in which a 
favourable pressure gradient is the prelude to the cavitation. 

In  some ways free streamline separation is easier to study because the point of 
separation may be well-defined by the potential flow. In addition, the boundary 
layer remains thin up to the separation point and cannot induce ‘breakaway ’, the 
situation in an adverse pressure gradient wherein a very thick boundary layer 
causes the potential flow to leave the wall. The validity of the boundary-layer 
approximation has been questioned for such cases with good reason, but for the 
flows discussed here, the boundary-layer approximation should be quite accurate 
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to within a very small distance upstream of the free streamline. To avoid any 
confusion, the boundary-layer phenomena considered here will be called 
‘shearaway’ because the separation point is one of infinite shear, as we shall 
see.t 

The analytical study of boundary-layer separation in an adverse pressure 
gradient was first considered by Goldstein (1948) in his classic paper. Although 
this work left some minor questions unanswered, later to be resolved by Stewart- 
son (1958), it was correct in all essential details and very few new ideas have been 
introduced since. For more current views on separation, the interested reader 
is referred to Brown & Stewartson (1969) and Kaplun (1967). In this paper 
our method is similar to Goldstein’s, the main difference being the form of 
the terminal velocity profile, which must be deduced in the course of the 
analysis. 

In  $2, the problem of ‘shearaway ’ is formulated mathematically. The form of 
the potential flow solution and the pressure gradient near the free streamline are 
derived in $ 3. An ‘inner’ boundary-layer solution of similarity form is sought in 
$ 4. The resulting differential equation involves a balance of inertia, pressure, and 
viscous terms, and the domain of validity of its solution is expected to be larger 
than if fewer terms had been retained. Nevertheless, the boundary condition 
at  the edge of the boundary layer cannot be satisfied and to obtain a uniformly 
valid solution, an ‘outer’ expansion is found in $5 which merges with the 
similarity solution via the matching technique. The principal result indicates 
that the skin friction just upstream of the free streamline is singular, to first 
order, and proportional to the inverse eighth power of the distance from the edge. 
The proportionality constant depends on the potential flow solution and is 
independent of the upstream boundary-layer motion. The upstream conditions 
enter the skin-friction expansion at  the second order by means of an eigen- 
function. The streamwise velocity profile at  the point of ‘shearaway’ starts with 
the power Y3, where Y is a measure of the distance normal to the wall. 

In $6, a comparison of the theory with some finite difference calculations is 
made and the agreement is quite good. Finally, in $ 7 the results are summarized 
and discussed. 

2. Boundary-layer equations 
We introduce a co-ordinate system with the origin located at  the point of 

separation and the negative X axis directed upstream along the plate (see figure 1) .  
The co-ordinate is the distance normal to the plate measured positively into the 
fluid. Denoting dimensional variables by bars, we introduce the following non- 
dimensional variables : 

x = Z/L, Y = gR*/L, u = UIUo, v = ZRt/Uo, p = g/pUb. (2.1) 
Here L is a length scale characteristic of the assumed potential flow outside the 
boundary layer, U, is the fluid speed along the free streamline, p is the constant 
fluid density and R = pUo Llp is the Reynolds number, p being the viscosity. 

t Tho names ‘boundary-layer separation’ and ‘ breakaway’ have been associated with 
points of zero shear in the boundary-layer flow. 
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When R --f 00, Prandtl’s boundary-layer equations are applicable? and may 
be written in the form 

au/ax+av/ay = 0 (x < 0, Y > O), (2.2) 

uau/ax+vau/aY = Qdq/dx+a%/aY2 (X < 0, Y > 0), (2.3) 

where U,(x) is the non-dimensional z component of velocity just outside the 
boundary layer and is determined from the potential-flow solution. 

The boundary conditions require 

u(x, 0) = 0 = ~ ( x ,  0 )  for x c 0, (2.4) 

u(x, Y ) - f U , ( x )  for x < 0, Y-too. (2.5) 

Equations of the type (2.2) and (2.3) also require an initial velocity profile to 
specify a solution downstream. However, for flows involving separation, the 

Potential flow 

Separation point 1 

B 

FIGURE 1. Sketch of geometry and z plane. 

problem is formulated differently. In these cases a separation (or terminal) 
velocity profile q( Y )  is assumed or deduced at  the separation point (x = 0)  and a 
description of the flow field is required upstream. Although an initial profile 
may be quite arbitrary, a terminal profile will usually be restricted because the 
solution it implies upstream must satisfy the boundary conditions and be free of 
singularities.1 These points have been discussed in detail by Stewartson (1957, 
p. 174) andKaplun (1967, p. 254ff.) inaphysicalway; muchremainstobedonein 
clarifying these ideas with rigor. The main point is that q( Y )  will not usually be 

t The boundary-layer equations fail in a small neighbourhood [x = o(l)]  of a trailing 
edge as Stewartson (1968) has pointed out. An analysis similar to Stewartson’s (1969) 
‘triple deck’ could be used to correct the boundary-layer solution in this region. The 
solution studied here will be correct for x: = O(1). 

$ Stated in another way, there is no reason to expect that an arbitrary terminal profile 
could have evolved from any physically relevant initial profile, with specified boundary 
conditions, and with a solution in between which is free of singularitics. 
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known in advance, although one might guess the first few terms as did Goldstein 
(1948). Here the form of q ( Y )  cannot easily be anticipated. Thus, we simply 

(2.6) 
write 

u(0, Y )  = U,(Y) for Y 2 0, 

and the form of V ,  will be deduced in the course of the analysis. 

(2.4), (2.5), and terminal condition (2.6) in x < 0,  Y 2 0. 
Our problem then is to solve (2.2) and (2.3) subject to the boundary conditions 

3. The potential flow near the point of separation 
Before (2.2) and (2.3) can be solved, the potential flow solution must be used to 

determine the forcing term q d q / d x .  When boundary-layer separation occurs in 
an adverse pressure gradient, the validity of this procedure is questionable 
because the thick separated layer may alter the assumed potential flow. This 
difficulty does not arise here because (1)  the position of separation is fixed in the 
potential-flow solution and (2) it  will be shown that the boundary layer separates 
with an infinitely favourable pressure gradient and thus remains thin up to the 
separation point. 

The nature of a potential flow near smooth and abrupt separation points has 
been discussed by Armstrong (1953) and Thwaites (1960, p. 165). A brief analysis 
will be given here to consider features of the flow which are important for the 
boundary-layer motion. 

We introduce the complex variable 2 = x + iy, and define the complex velocity 
potential W ( 2 )  = @ + iY and complex velocity d W/dZ = U - i V .  Each function 
will be analytic in 2 (excepting isolated singular points) and thus the logarithm 
of the non-dimensional complex velocity 

r( W) = &(@, Y) - iO(@, Y) = In (dW/dZ), (3.1) 

will be an analytic function of W .  The fluid deflexion 8 is related to the logarithm 
of the non-dimensional speed, &, by the Cauchy-Riemann equations. Here 2 and 
W have been non-dimensionalized with respect to L and LU,, respectively. We 
choose W = 0 at  the point of separation, and the traces of the 2 plane in the W 
and I? planes are shown in figures 2 and 3. 

The potential solution near point 0 can be found by locally mapping the 
r plane onto the W plane. This transformation yields an explicit differential 
equation of the form (3.1). Applying the Schwarz-Christoffel transformation we 
find 

where G( W )  is an arbitrary function, analytic in the neighbourhood of W = 0, 
with a Taylor series expansion 

a r p w  = ,vw-&G(w), (3.2) 

m 

G(W) = 1 +  a, W”, (3.3) 
n= 1 

and E’ and a, are constants. Upon substituting (3.3) into (3.2)) integrating term- 
by-term and requiring r = 0 when W = 0, we find 

r(w) = lc’[~Wt+(~)a,~g+(~)a,W8+ ...I. (3.41 
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Putting W = peiy  with 0 < y < 7r and noting, 

Q = 0 for y = 0, 

8 = 0 for y = T, 

-e  4 
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FIGURE 3. I? plane. 

the final form of (3.4) may be written 

r ( W )  = -ke-~niWB[2+(~)cc ,W+(~)a2W2f . . . ] ,  (3.7) 

where the constants k and a, must be real. Substituting (3.7) in (3.1) yields a 
differential equation for W which may be solved subject to the condition 
W(0)  = 0, i.e. 

Z = W++ketnfW%+k2eni WZ+O(Wg). (3-8) 
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Using (3.7) and (3.8) andnoting that along thewallAO,dW/dZ = U and W = peni, 
we find after some algebra 

U(x,  0) = 1 - 2k( - x)B - Fk2x + O[( - x)#] for x < 0. (3.9) 

Identifying Ue(x)  with U(x ,  0 ) ,  we fmally obtain 

+ ( y ) k 2 + O ( ( - x ) * )  for x < 0. (3.10) 
dU, k lap - - U,- = - 

P dx ax (-x)$ 

Thus the pressure gradient is infinite for x-+ 0 - and for the physical situations 
considered in this paper, the constant k will be positive. When k < 0, the pressure 
gradient is infinitely adverse and the boundary layer would no doubt have 
separated upstream of 0. It is noteworthy that the first two terms in (3.10) depend 
on the single constant k of the potential flow. 

4. Similarity solution 

approached it is convenient to use 
For problems where Ue(x) monotonically increases as the free streamline is 

t = 1 - u,(x) ( t  2 O), (4.1) 

as a new independent variable in place of x (see, for example, Ackerberg & Glatt 
1968).? Introduce the stream function Y(t, Y) with 

u = aYr/aY and v = U:aY/at. (4.2) 

Here primes denote differentiation with respect to x. Equation (2.3) may be 

(4.3) 
written 

where subscripts denote partial differentiation. The boundary conditions 

- Y y Y yt + Yt Y y y = 1 - t + ( U:)-lYp p y , 

(2.4)-(2.6) require Y y = 0 = Y t  for Y = 0, t > 0, (4.4) 

Yy+l-t  for Y+m, t > 0 ,  (4.5) 

and Yp+U8(Y)  for t + O + ,  Y >  0. (4.6) 

( u p  = (t/2k2)[1+3+ ...I = ( z k y t  c C n P ,  

When (3.9) is used to express (U;)-l in terms of t ,  we find 
m 

n=O 
(4.7) 

where the c,’s are constants of the potential flow and k is the constant in (3.9). 
An ‘inner’ asymptotic solution of (4.3) is sought in the form 

Y!’$(t, Y )  = 2*kcPJ’(t77), (4.8) 

where 7 = 2*kY/ta, ,$ = ta (7, 2. O ) ,  (4.9) 

and a and p are constants to be found. This solution is expected to be valid for 
7 = O( 1) and E+ 0. The velocity components are given by 

(4.10) u = 2k2c~-1Fq, v = 2~kaU:~~-(l/a)(/3F -7F 7 +[F 6) . 
t In many problems of physical interest the monotone requirement will be met because 

the boundary layer will commence at  a stagnation point (attachment) and terminate at  
the free streamline. 
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When (4.7), (4.8) and (4.9) are substituted in (4.3), we obtain 
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ap-2- (1’qpFq7 - (p - 1 ) q  + .&-(I$F,, - F 7 4 J ]  
= 1 - + [‘”& + + . . .]Ep4F,,,. (4.11) 

To find a solution which has the largest range of validity, it  is plausible to 
balance inertia, pressure, and viscous stress terms (as far as possible) in the 
differential equation. Such a balance is obtained if we choose 

with P having the form F(.&-, 7) = 2 @nF,(r).t 
n=O 

(4.12) 

(4.13) 

The equations for F, and F, are 

Fr  - $B’’F; + BJ’h2 + 1 = 0, (4.14) 

F , ” - q l i b s ~ + ( n - t - l ) ~ ~ F ~ - ( n + q ) s b F ,  = G, for n 2 1, (4.15) 

where G, is a function of the Fm’s (m < n) and the coefficients c, appearing in 
(4.7). There may also be forcing terms due to eigenfunctions. 

The no-slip condition requires 

Fn(0) = 0 = Pk(0) for n z 0, (4.16) 

where now a prime denotes differentiation with respect to 7. To satisfy (4.6) a 
matching condition, to be discussed in $5, will require that 

F,(7) must not contain any exponentially large terms for q+m. (A) 

(a)  The function F,(y) 
A series expansion for F,  about the origin is given by 

m 

where the an’s are known in terms of a,. Efforts to integrate (4.14) numerically, 
starting at  7 = 0, were not successful because a small error in a, yields a solution 
which develops a singularity of the form 3(7* - r)-l where 7” > 0. 

The numerical solution was obtained by integrating backwards, starting with 
the asymptotic expansion, 

m 

(4.18) 

where A ,  and A ,  are arbitrary and 

A ,  = A ,  = A, = 0, A,  = 9(5A,)-l, A,  = 4 ( 5 A o ) - l ,  etc. (4.19) 

Values for A,, and A,  were chosen and the integration proceeded backwards 
from 7 = 20 using a fourth-order Runge-Kutta method. New values for A,  and 

-f For the time being, the sum in (4.13) will be restricted to integer values; however, 
‘eigenvalues’ are not only possible but necessary for a physically sensible formulation. I n  
some cases ‘eigenfunctions’ may be exponentially small (see Ackerberg 1968, p. 1287) and 
they would not appear in a series of this form. I n  physical variables (x, Y), the similarity 
variable 4 oc Y / (  -x$. 
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A ,  were computed using Newton’s method until (4.16), with n = 0,  was satisfied 
to O(1O-7). The final results for Fo and 3’; are displayed in figure 4 and 

A,  = 1.950718 ..., A,  = - 1.577568 ..., Pg(0) = 3.014015 .... (4.20) 

( b )  The functions Fn(r) 
There are three independent complementary solutions of (4.15) with series 
expansions about 7 = 0 starting with multiples of 

16 

12 

F ;  

Fll * 

4 

0 

1’ 7’ T2.  

0 1 2 3 4 

7 
FIGURE 4. F,(v) and FA(v) versus 7. 

(4.21) 

For 7’00, three complementary solutions may be found whose asymptotic 
expansions start with multiples of 

73, 7W+5), 7-B(4n+s)exp {%Ao$). (4.22) 

Solutions for F, may be obtained in the following way: First a particular solution 
B’g is determined which satisfies (4.16). In  general, this solution will contain a 
multiple of the exponentially large term, shown in (4.22), in its asymptotic 
expansion.? To satisfy the asymptotic condition (A) it is necessary to add to Fg a 
multiple of a complementary solution satisfying (4.16) which will eliminate the 
exponentially large term. This procedure will always be possible unless comple- 
mentary solutions exist which satisfy both (4.16) and (A); such solutions will be 
called eigenfunctions. 

If we use mathematical induction, the forcing terms in (4.15) will, by hypothesis, be 
algebraically large and will contribute only algebraically large terms to F;. 
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( c )  Eigenfunctions 
To see that eigenfunctions are formally possible we first note that a comple- 
mentary solution of (4.15) is any multiple of F& We substitute 

Fn = F ~ w ,  (4.23) 

into (4.15), neglect the right-hand side, and put x = w’. The resulting equation is 

F&“ + (3Fi - $Fo F;)z’ + (327: - $Fo F: + hPi2)z = 0, (4.24) 

where h = n + 1. The boundary conditions require 

lz(O)[  < 00 with z(O)/z ’ (O) = Fg(O), 

Using an integrating factor, (4.24) may be written in the self-adjoint form 

(B;3e-q~’)‘ + FA2e-qPz = 0, 

(4.25) 

and z(7)  should have no exponentially large terms for q +m. 

(4.26) 

Fo(q)d~andPisthemultiplierofzin(4.24). If (4.26)is multiplied whereq(7) = 2 
by x ,  integrated from 0 to 00, and solved for h we find 

so” 
/0mF;3e-g~‘2dq - F;2e-q(3Fr -$FoF;)z2dq 

A =  K .t (4.27) 
/0m~;4e-qz2 

Since F r  6 0, F,, FG 2 0, the second integral in the numerator is negative and if 
eigenvalues exist, they must be positive. 

When the differential equation for F, possesses an eigenfunction and a forcing 
term, which we have denoted by Gn(q), a solution will exist only if Gn(7) satisfies 
an integral relation.$ To derive this result let zo denote the eigenfunction corre- 
sponding to h = A, and put Fn = Fiwn with z ,  = w;; thus 

(F3e-z;)’ + F;2e-qP(r, h,)z, = 0, (4.28) 

and (F;3e-~z;)’ + FA2e-PP(q, h,)z, = Bh2e-qG,. (4.29) 

Multiply (4.29) by zo and (4.28) by xn, subtract the equations and integrate by 
parts over the infinite range. Using the boundary conditions we find 

(4.30) 

Unless fortuitous circumstances prevail, this equation will not be satisfied and a 
modification of the previous terms in the asymptotic expansion must be made to 
avoid this contradiction. This procedure has been called ‘switchback’ and the 

t The convergence of the integrals at the upper limit is ensured by the factor 

f Without a forcing term, the solution for Fn is an arbitrary multiple of the eigen- 

3 This equation is the well-known requirement that the forcing term must be ortho- 

c-Q Nexp (--+$4,,$). 

function. 

gonal to the eigenfunction to avoid resonance. 
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remedy involves the inclusion of the term ([tnln E)f,(r) in (4.13) for the following 
reasons: (l)f, will satisfy the homogeneous equation of I?, and will therefore be an 
arbitrary multiple of the eigenfunction, (2) the inclusion off, will introduce a new 
term cg,(q), c being an arbitrary constant, into the forcing term for F,. Thus the 
integral relation (4.30) will be replaced by 

(4.31) 

and a value for c may be chosen so that (4.31) is satisfied. In  rare cases this 
procedure will not be sufficient because the additional forcing terms, dependingon 
f,, will cancel in the equation for F, and we must consider 'double switchback', 
i.e. the introduction of a logarithmic term at an earlier stage in the asymptotic 
expansion. 

Although the evolution of the structure of these asymptotic expansions is 
interesting, the most important point is that the multiples of the eigenfunctions 
are not known and depend on the initial conditions for the bsundary-layer 
motion upstream. This is not surprising physically, yet for the free streamline 
problem considered here, the singularity in the pressure gradient is strong enough 
to completely determine the skin friction near the free streamline to first order, 
independently of the initial conditions. The initial conditions will enter at  the 
second order via an eigenfunction. 

(d) Eigenvalues and the skin friction 

A numerical computation, described in the appendix, yielded the first two 
eigenvalues 

The corresponding values for 4n are 1-2629.. . and 9.0249.. . . Since these values are 
not integers, there is no need to introduce logarithms thus far. When the eigen- 
functions are included, the first few terms in the expansion for P((,r)  [see 
equation (4.13)] are 

A, = 1.3157 ..., A, = 3.2582 .... 

F(c,  7) Fob(q) f tYF7(7) f t2'F2'z,(7) $. t3'F3y(7) +tF1(7) +o( t ) ,  (4.32) 

where y = 0.3157.. . , F' is an eigenfunction and F& and F3Y its offspring, 
The skin friction 7w is given by 

7w = (a+ Y),=, = 2%k3t-@;(0) + d t Y  + cw + C ~ / W  + o(t)], 

7w = 2fk9(3*014015 ...) ( -x)-%+ ..., 

(4.33) 

where c', c", c"' are unknown and dependent on the upstream boundary-layer flow. 
Thus, 

(4.34) 

and to first order the skin friction is independent of the boundary-layer motion 
upstream. 

5. Principal asymptotic expansion 
The boundary condition (4.5) has not been imposed thus far because 

the solution found in $4 is not uniformly valid for large Y .  To satisfy 
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(4.5) an 'outer' asymptotic expansion? based on ( t ,  Y )  is assumed to be of 
the form 

where Y o ( Y )  = U,(Y)dY. 
1 O Y  

Substituting (5.1) into (4.3) and equating to zero the coefficients of each power o f t ,  
we find YAY; - YiY1 = 0, (5.3) 

Y;Y;-Y;Y2 = - 1, (5.4) 

YAYk-Y:Yn = Hn(Yo,Y1...,Yn-I), (5.5) 

where primes now denote differentiation with respect to Y .  Hn depends on 
previous Ym's (m < n) (and may be zero) and n is not restricted to integer values. 
For Y -+LO, (4.5) requires 

YA(Y) N 1, Y ; ( Y )  N -1 for Y+m, (5.6) 

and YA( Y )  N 0 for all other n when Y +a. (5.7) 

Y l ( Y )  = koY;(Y), (5 .8 )  

The solutions of (5.3)-(5.5) are 

y"z( Y )  = klY;( Y )  -YA( Y )  [Y;(s)]-2ds, S' (5.9) 

Y 
Y,( Y )  = hy;( Y )  +Ti3 Y )  1 H,(4 "r;(s)l-2~, (5.10) 

where k, are constants of integration. If Y:( Y )  N 0 with an exponentially small 
error, YL will satisfy (5.6) and, by induction, YA will satisfy (5.7); thus (4.5) will 
be satisfied by the outer expansion. 

(a )  The matching requirement 
It remains to be shown that (5.1) provides an extension of the asymptotic 
expansion (4.8) to the region Y = O(1). If we assume this is true (and verify it 
a posteriori by its consistency), the matching requires 

limyPi(c, 7) = limYo(t, Y ) .  
Il-= Y-0 

(5.11) 

The limit on the left should be interpreted as one in which Y is non-zero, fixed but 
very small, with [+ 0. Once the asymptotic form of Yi(c, 7)for 7 --fa is obtained,$ 
the result should be expressed in terms oft, Y and should agree, term-by-term, 
with the right-hand side of (5.11). The condition (A) requiring that Fn(q) be, at 

t This type of expansion, first used by Goldstein (1930, see §2.4), has been called the 

1 Neglecting exponentially small terms, if there are any. 
principal asymptotic expansion by Kaplun (1967). 
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most, algebraically larget when q+oo can now be justified as follows: it is 
expected that the terminal velocity profile determined from Yo( Y )  will satisfy a 
no-slip condition at  Y = 0. If Yo = O( Y") (a > 1) for Y --f 0, the complementary 
solution for Ynoc YA = O( Ya-l). Using induction, it may be shown that all the 
particular solutions for Yn will be algebraic functions of Y(and In Y) for Y -+ 0. 
Thus, (5.11) could not be satisfied if Yi contained exponentially large terms for 
7 -too. 

( b )  The terminal vebocity proJile 

The velocity profile U,( Y )  = Yi( Y )  is determined by the first term of the asymp- 
totic expansion of each Fn(q) for r+co [see (5.1) and (5.11)]. Thus using (4.8), 
(4.13) and writing &(r) - A$$(4m+5)$ 

Y, (Y )  = 24k(2+kY)Q n=O A:(ztky)$n, (5.12) 

where the sum extends over all n, including the eigenvalues and the family of 
terms they beget. The first five terms involve the following powers of Y :  

Yf, y2.087 ..., y2.508 ... y 2 9 2 9  ..., y3. 

The forcing terms, due to (U;)-', first enter the expansion with the term Y3. 

6. Comparison with numerical data 
Some numerical integrations, using an explicit finite difference method, were 

carried out by Ackerberg and Phillips (private communication) in the hope that 
the form of the skin friction singularity near the free streamline might be de- 
duced. The method of integration, which employed Mises variables ( t ,  Y), has 
been described in Ackerberg (1968)s and the details will not be repeated here. 
Accurate results very near the free streamline could not be obtained for the 
following reasons: (1) The method for finding the skin friction involves the fitting 
of the seriesexpansionfor u( t ,Y ) ,  which proceeds in powers of Yh, to the numerical 
results at each step (see equation (A2.12) of Ackerberg 1968). When t+ 0 + , the 
coefficients of this series become singular due to the pressure gradient singularity, 
and truncating the series at  any stage introduces spurious singularities which 
are not related to the one being sought. (2) The terminal profile (5.12) indicates 
that for Y --f 0, the first term of u(0, Y) cc Yz and not Y4, which is the case for any 
t > 0. The transition from one form to the other as t +. 0 + must be intimately 
related to the infinite number of near singular terms in the series expansion for 
t > 0, and it would have been remarkable to have obtained accurate results.!! In  
spite of these difficulties some numerical results for the boundary-layer flow on a 

t Terms of the form (In q)%p (which we consider algebraic) might also appear. 
$ Referring to equation (4.18) A! E A,. 
8 The points at the edge of the boundary layer now require a different treatment. 
11 The most serious objection to using Mises variables for studying boundary-layer 

separation in adverse pressure gradients is that for Y + 0, u(zs, Y) K YE"g (xs being the 
separation point), whereas for x < xs ,  u ( x ,  Y) cc Y*. In the past most authors have 
objected to the singularity in au/aY for x < x ,  at Y = 0, which may be handlcd with ease, 
and have overlooked the nasty tramition problem from t o  'd. 
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finite flat plate set perpendicular to a uniform stream were obtained. The potential 
flow was assumed to be of the Kirchhoff-Rayleigh type with free streamlines 
attached at the salient edges (2  = 5 Z), and the velocity, U,(x) = s, is given 
implicitly by (see Ackerberg & Glatt 1968) 

x = s(sz + 3) (1 + s ~ ) - ~  + 4 sin-1 [2s( 1 + s ~ ) - ~ ]  (0 < s < 1). (6.1) 

Here the length scale L = 4(n + 4)--??, Z being the half-breadth of the plate, and 
the value of the inverse sine is in the range (0, in). 

0.92 0.94 0.96 0.98 1.0 

u, = 1 - t  

FIQURE 5. Comparison of the asymptotic theoretical result with finite difference calcula- 
tions. Curve 5, theoretical result using (4.33) with 2* k = 1 [see (4.7) and (6.l)l and using a 
least squaresfit withcurve 4 to obtain c' = -2.818..., c" = -0.961.... Numerical results: 
curve 4, h = 0-005; curve 3, h = 0.010; curve 2, h = 0.020; curve 1, h = 0.040. 

The results for the skin friction, obtained for four different Afs( = h) [h = 
0-04,0~02,0~01,0~005],  are shown in figure 5. The dashed curve is the theoretical 
result from (4.33) with values of G' and c" determined from fitting with the 
numerical data from curve 4 using the method of least squares. In  this author's 
view, the agreement between the asymptotic expansion and the numerical data 
is quite good. A more detailed comparison using the velocity profiles will be made 
in a subsequent paper. 

With numerical results for four different mesh sizes, it is tempting to try to 
improve the results by some extrapolation method. This does not seem possible, 
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however, because an artificial singularity of the form rw cc hi( 1 - s)-* develops 
due to the truncation of the series expansion for u(t, $) when 9 + 0, and it is not 
clear how to remove it; even if it is removed in some way, it is not obvious how to 
interpret the remainder. 

7. Summary and discussion 
It has been shown that for problems involving ‘shearaway’, with a pressure 

gradient of the form (3.10), the skin friction a t  the edge is singular and propor- 
tional to (-x)-*, to first order. The constant of proportionality depends on the 
potential flow solution and is independent of the boundary-layer motion up- 
stream, The upstream boundary-layer flow influences the skin friction at  the 
second order through the inclusion of an eigenfunction. The terminal velocity 
profile U,( Y ) ,  for Y -f 0, contains non-integral and integral powers of Y ,  the first 
power being Y3. 

A comparison of theoretical results for the skin friction with some obtained by 
numerical integration showed good agreement. This author believes that the 
numerical integration of the boundary-layer equations for flows of this type is a 
challenging problem which deserves further consideration. A subsequent paper 
will compare the asymptotic theory with the numerical results in more detail 
and will extend the analysis to axisymmetric free streamline flows. 

This research was supported by the U.S. Army Research Office, Durham, 
under Contract no. DA-3 1 - 124-ARO -D-444. 

Appendix. Eigenvalue calculation 
Solutions of (4.24) subject to (4.25) and the condition following (4.25) are 

possible onlyfor specialvaluesof A. Near 7 = 0, two linearly independent solutions 
of (4.24) may be found which start with multiples of 

1 or v - ~ .  
When 7 -too, two linearly independent solutions commence with multiples of 

7gA-1) or 7-4(4h+l) exp {%A,$}. 

If we denote a solution which is finite at 7 = 0 by z,, and a solution which grows 
algebraically for 7 +co by z2, our task is to  find those values of h for which z1 is a 
constant multiple of z2. 

A simple numerical method for finding these values is as follows : Let 7 = r be a 
value in the range 0 < 7 < T, where T is large enough so the WKBJ approxima- 
tion can be used to  approximate the solution x2 .  Then, to a fair degree ofaccuracy, 
z i  and z, are related by the equation obtained from (4.24), with the term 2’’ 
omitted. Choosing values for A, x2 ( T ) ,  and z,(O), we may integrate backwards to 
find z2(r)  and forwards to determine z l ( r ) .  At 7 = r ,  compute the Wronskian, 

which has been written in this way to avoid any problems with scaling. When 
W ,  vanishes, an eigenvalue has been found. By using Newton’s method to 
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correct successive values of A, the eigenvalues may be found to 3 or 4 significant 
figures with 4 or 5 iterations. Some difficulty might be encountered if one of the 
terms in the denominator of (A 1) vanishes. Therefore it is also convenient to  
compute W2(r; A )  which is obtained from (A 1) by inverting the last term; thus 

w, = w,/(w,- I), 
and W, and W2 vanish together. The eigenvalues of $ 4  were found by choosing 
T = 20, and r = 1. To compute larger eigenvalues, x2(T) must be chosen large 
enough to yield a value z2(r) which is not so small that it is inaccurate due to the 
numerical integration. 
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